ABSTRACT
In this article we argue that digital simulations promote and explore complex relations between the player and the machine’s cybernetic system with which it relates through gameplay, that is, the real application of tactics and strategies used by participants as they play the game. The magic space created by the board is considered to be more than a space of confusion between the real and artificial. It first presents itself as a curtain or interface between the participant's body and the digital simulation inherent to the computational system.

Categories and Subject Descriptors
Story Representation, Mechanism and Context (SRMC). Narrative creation, artificial intelligence, social networks. new forms of story expression, interface design and user-generated story-sharing platforms.

General Terms

Keywords
Gameplay, Digital Games, Realism, Action, Embodiment.

1. INTRODUCTION
When we are in fiction mode, in a game for multiple participants like Second Life, we are not confused in a sensorial sense; we do not feel the sand of the beach or the wind. Our body is "on this side" of the window, suffering back pain and retinal persistence from moving images. Regular players may suffer from tendinitis, muscle and skin problems (Gunther, 2005). To say we are “on the other side of the mirror” is to deny the importance of the player’s bodily experience and to assume that the avatar’s experience is the most important factor to consider. We disagree with some enthusiastic readings of contemporary cyberculture that defend the possibility of discarding the body in disembodied and "fleshless" experiences. For some authors, the real/virtual ratio in digital games is a ratio of immersion and loss of references (Ryan, 2001; Castronova, 2005; Meadows, 2008), for others, this immersion is quite inefficient to explain the relationship players have with the fiction they confront (Galloway, 2006; Juul, 2005; Salen & Zimmerman, 2004; Grodal 2003) through gameplay. The immersive experience is a cinematic experience that has little to do with movement inherent to action and reaction found in digital games.

2. REALISM AND SIMULATION IN DIGITAL GAMES
The realism in the game is related to the capacity the mechanism has to respond to actions the player processes on the digital board. Thus, it is considered that only one analysis that takes into account the player’s bodily and spatial experience in the game system can be efficient in interpreting analogue simulations and experiences. The human-machine relationship involves the construction of schematic and simplified representations of our bodies (avatars), but has yet to offer us passage to other dimensions. Gameplay fiction does not allow us to escape “flesh and blood” reality. In this context, it is argued that simulation is a representation of a source system through a less complex system that sets the format of the player's understanding about the source system in a subjective manner. No simulation escapes the ideological context, and the synthetic form (synthesis) it presents is immersed by the experience’s subjectivity. Video games require a critical interpretation that moderates our simulation experience and the set of consistent and expressive values, answers or understandings that constitute the effects of the work (Bogost, 2006). Thus, exploring the manifestation of the rules of the game in the player’s experience is considered perhaps the most important type of work any critique on digital games can do. The mechanism of the game (simulation) maps the player, acts and reacts according to his/her inputs; rewards one’s attention with its own attention. Action and reaction. The simulation replicates the player’s experience and amplifies it through mechanisms inspired by human body biology, although far from it since it deals with the machine's digital body, Boolean sequences and software strips. The online game offers us a social simulation: “The game’s realism is about the extension of each person's social life” (Galloway, 2006: 78). Players play knowing well they are participating in a simulation and that life is not as convincingly organised as the narrative’s principles. However, only the real is open to true possibilities for action and can address our senses (Atkins, 2003). It is the player’s experience...
on the game board that defines the true extent of realism and this takes us to how the received work is understood by the participant in the simulation system. Citing Frederic Jameson in “The Existence of Italy”, Alexander Galloway emphasises:

“‘Realism’ is, however, a very unstable concept owing to its simultaneous, yet incompatible, aesthetic and epistemological claims, as the two terms of the slogan ‘representation of reality’ suggest. These two claims then seem contradictory: the emphasis on this or that type of true content will clearly be undermined by any intensified awareness of the technical means or representation artefact of the work itself. Meanwhile, the attempt to reinforce and to shore up the epistemological vocation of the work generally involves suppression of the formal properties of the realistic ‘text’ and promotes an increasingly naïve and unmediated or reflective conception of aesthetic construction and reception. Thus, where the epistemological claim succeeds, it fails; and if realism validates its claim to being a correct or true representation of the world, it thereby ceases to be an aesthetic mode of representation and falls out of art altogether. (…) Yet no viable concept of realism is possible unless both these demands or claims are honoured simultaneously, prolonging and preserving – rather than “resolving” – this constitutive tension and incommensurability” (Galloway, 2006: 73-74).

There are no cultures exterior to the realistic attitude and every commentary is full of formal ideas about the world. Realism is always more a quality of representation than precisely what is not real. Symbolic representation and the manipulation of abstract forms are only possible in types of games that appeal to configuration and to reflexive action. However, realism in the game does not assume an instrumental cause and effect relationship between the actions of players on the console’s handles and buttons and their consequences in the real world. This argument would take us back to Columbine, whose theory is quite well-known: the murderers were playing electronic games, thus, as a result, violence was generated. It is argued that the Columbine theory defends the opposite, that is, that the games can generate realistic effects. However, the fact the player improves shooting and game skills through the device does not prove that this practice is used as a source of criminal inspiration.

It is necessary to have congruence and loyalty to the context, which is transferred through the senses of the player’s social reality to the game environment. Normally, after the game the player return to reality without any confusion. The congruence between the social reality experienced in the game and the social reality experienced in real life by the player is fundamental. In this sense, a realistic game must be so in terms of action and not so much in terms of representation. Action game players at times reduce the detail of representation to increase response speed. Loyalty to the context is the key to understanding realism in video games because they offer the third moment of realism, that is, realism of action.

The realism present in video games is sensorial. Players remain in the game world because unreality is attractive and fills their imagination. The suburban homes of the Sims are immune to racism, sexism and religious intolerance. They undergo a simplification, abbreviation and reduction of the world in which everything is generalisation. The Sims nation is modelled on the world in which we live, but capitalism is the only model we can play (Atkins, 2003: 129-33). Consumer society also reigns in Second Life through a matrix that essentially favours the acquisition of material goods. In “Robber, Sailboat, Atom, Book”, Shelley Jackson says the virtual has become part of our real experience and our mental experience, incorporating computer game landscapes and remixing them in the manner we synthesise our life. The Sims have not replaced our life, but rather have changed it: “The world we live in is one we have made for ourselves in our minds, out of what our senses bring home to us. The real world is already an imaginary world. For every tree there is an imaginary tree inside us, either schematic or richly complicated. So those live most vividly who have the best imagination” (Jackson, 2004: 200).

3. FICTION AND EMBODIMENT

Fiction in the game is ambiguous, optional and imagined by the player in an uncontrollable and unpredictable manner. The emphasis on fiction worlds may be one of the strongest innovations of videogames. Fiction helps the player understand the rules of the game. The rules separate the game from the rest of the world by building an area where they are applied; fiction projects a different world from the real one. The game’s space is part of the world in which it is played, but the space of fiction is outside the world in which it is created. A magical circle is adopted, a border between the context in which the game is played and what is outside this context (Juul, 2005). The fictional world present in the game depends strongly on the real world to exist and helps the player make assumptions on the real world in which this game is played.

Total involvement of the perceptive body reminds players, through pain, that they are participating with their whole body in the device. Thus, one player says: “I like combat games because of the stress they contain, your fingers glued to the handle… pure reflexes, not a moment to think” (Loic, 27, cited by Clais & Roustan, 2003: 41-42). Countless parasite movements, that is, uncontrolled movements that do nothing to optimise game actions, confirm the total involvement of the player’s body. There is a breaking away (“décrochage”) of this body in relation to conscious desire and some players have actually declared they have fallen asleep while playing. The eyes are stimulated, but they raise a resistance to the images through countless mechanisms of retinal persistence, for example. Headaches, backaches, and eye problems can emerge as a direct consequence of a game session. Players are stimulated in their attention as well as their perceptions not to mention their emotional investment. Some players complain of emotional fatigue: “there is truly a moment in which I reach a maximum level of excitement and where I feel that after that I'm going to feel anguish, so that if I continue I won't feel good…” (Alexandre, 23, cited by Clais & Roustan, 2003: 38).

During the act of playing, there is a numbing of the body’s conscious attention: “observations with players in action show that from a certain level of game experience, there is a reduction in
reflexive consciousness, the hands are mechanically activated beyond all deliberate control” (Clais & Roustan, 2003: 41). Technical mastery of the game can be considered a process of incorporation similar to what happens in car drivers; motor stereotypes or simply motor algorithms are acquired that result in an economy of energy enabling the body to resist longer without fatigue, where:

“The perceptive body is at the centre of this appropriation mechanism. It resembles a “rubber band” in the action, and even more so in the repetition of the action. It is no longer limited to the boundaries of the flesh and is accompanied by a capacity of extension to the surrounding objects and with which the player got used to developing automatism in order to know all of the characteristics and physical reactions. Thus, in order to play well and access the pleasures of the technical domain implies “forgetting” the body in action to the point where the body plays more, as I play less.

The player's habits and routines must be analysed in terms of action, reaction, adjustment and repetition. After Warnier makes the object part of the body, he incorporated it into his “dynamic”, “as a prosthesis in motor conduction (...)”. Now it is necessary to understand the meaning of “incorporating” the dynamic of the videogame” (Clais & Roustan, 2003: 42-43).

The screen is like a fetish. We desire it not only to see but also to be seen in it. This strengthened visibility by the screen makes us realer: “To be visible means to be real. When we make ourselves a reality on the screen, our “I” becomes more real. The child becomes aware of its identity and its body when it enters the mirror phase2 - when it sees itself. Today, the mirror is replaced by the screen” (Filiciak, 2003: 100). In cinematic experience, the spectator’s body is never reflected on the screen. The avatar functions like an “I” and an “other”, symbol and index. As “I” the behaviour of this avatar is associated with the interface (keyboard, mouse, and joystick) and relates to the player’s actual movement, but also to the triumphs and defeats in figurative terms that result from the player's action. As the “other” because the avatar’s behaviour is a supernatural intermediation delegated by the “I”, for which it is the ambassador and representative. The avatars are different from the human “I” because of its capacity to live, die and live again, in a symbolic rebirth. If we consider that the avatar is a reflection of the player, this reflection corresponds to body reality, in a mapping that is not only appearance but also control. We can find the same type of situation in surveillance cameras where the body sees its gestures reflected through a real time device in a reflective environment. The avatar articulates an obedient representation of the corporeal being on the screen by manipulating the interface. The concepts of avatar and interface connect through the game. Rehak says: “If the mirror stage initiates a lifelong split between self-as-observer and self-as-

observed, and the videogame exploits this structure, then, in one sense, we already exist in an avatarial relation to ourselves” (Rehak, 2003: 123).

In this context, we consider that our experience in the world already encapsulates a capacity to simultaneously transform us into spectators and participants, in constant tension between an illusion of unity of the “I”, which our conscience intends to supply, and the fragmented multiplicity of our perception. The “other” that we see reflected in the mirror is already one of our avatars and the games are only extensions of that “other” the mirror offered us when we were just one year old. What is in question and seems reflected in the mirror is not the coherent whole of our identity, but the lack of coherency and unity of this identity. Thus: “video games seem to offer the potential for profound redefinition of body, mind and spirit” (Rehak, 2003: 123). There is a continuum between the player and the game world: “We see “through eyes of the monitor” what our body is supposed to feel and register. (...) as a sort of imaginary prosthesis, it links the player’s body into fictional world, again emphasizing a continuum between the player's world and that of the game” (Lahti, 2003: 161). The stories present in videogames are stories for the eyes, the ears and the muscles. These stories have the capacity to adjust our experience, organising perceptions, emotions, thoughts, and motor actions (pectora). In this context, they cannot be understood through the French structurist models that dominated narrative theory because they are not concerned with the implementation of the narrative in the brain and do not take into account the internal relationship involving perception, emotion and action in narrative structures (Grodal, 2003).

4. PROPRIOCEPTIVE EXPERIENCE AND GAMEPLAY

The proprioceptive experience, a sensorial-emotional-motor experience, enables players to go from the passive to the active position in relation to others and this characterises us as human beings. The quality of the first interactions between the baby and its environment feed a general impression that confirms the idea of a consistent universe similar to what is felt in kinaesthetic terms. In this context, a bodily experience is what confirms the connection of the being to the world. This experience is facilitated by proprioception, which enables the acquisition of certainty that we are the authors of our own acts and that, through our hands, as natural extensions of our desire, we perform our movements. The “sensorial narration” reminds us of the stories or recitals the human being tells itself according to the life situations it faces. In these situations, the need for consistency is vital and at each moment we have the need for a beginning, a middle and an end where repetition, this “acting again”, provides an experience of trial and error that enables the construction of a consistent world” (Siora, 2003: 53-66).

Proprioceptive coherence, a term used by phenomenology that refers to how the frontier of our body is combined with feedback loops and habitual uses, is what enables tennis players, for example, to feel the racket as an extension of their own body, it is the feeling that tells us where this frontier lies. In this context, videogame players feel a relationship of continuity with the keyboard and with the screen surface as a space in which subjectivity can flow (Hayles, 2001). The enormous difference

---

2 As described by Lacan and elaborated by Samuel Weber, the mirror phase occurs in children between six and eight months of age, when they meet and respond to their reflection for the first time as something that belongs to them. Contrary to animals, which quickly lose interest in mirror surfaces, the child proceeds to try gestures from its own reflections (Rehak, 2003: 103).
between how proprioceptive coherence works on the computer screen when compared to the printed page is one of the reasons why spatiality is so important in the topographic writing found in electronic fiction. Bodily and psychological integration is evident:

"The brain and the body are integrated by biochemical and neural circuits reciprocally directed from one to the other. (...) the blood stream; it transports chemical signals, like hormones, neurotransmitters and neuromodulators. (...) the brain can act, through nerves, on every part of the body" (Damásio, 1994: 97).

The real involves sharing and a feeling of repetition in which the "word "represents", however, does not cover the exact meaning of the act, at least not in its looser, modern connotation; for there "representation" is really identification, the mystic repetition or re-representation of the event. The rite produces the effect which is then not so much shown figuratively as actually reproduced in the action. The function of the rite, therefore, is far from being merely initiatory; it causes the worshippers to participate in the sacred happening itself" (Huizinga, 1950: 15). The real re-presents and encompasses something shared. The terms repetition, share, proximity, ineffability are recurring words and thoughts in digital narratives. In order to check if something is real, we hope to be able to experience the occurrence again. Repetition is what constitutes the regularity that allows us to identify something as real and through it find others, the community. The fictions do not become confused with the real, but rather free the human from real constraints: "The normal man, like the comedian, does not view imaginary situations as real, but rather, on the contrary, frees himself from the real body and its vital situation in order to breathe, speak and smell in the imaginary" (Merleau-Ponty, 1945: 121-122).

5. CONCRETE AND ABSTRACT MOVEMENT IN SPACIAL EXISTENCE

Spatial existence is a primordial condition for all living perception, and kinetics initiation is an original way for the subject to relate to the object. There is a difference between abstract movement and concrete movement where perception and movement form a system that changes as a whole and the notion of real is intimately connected to incorporation, a body that assimilates reality's data through movements in space. Whereas concrete movement is tactile, abstract movement is visual, and depends on the power of representation (Merleau-Ponty, 1945). The notion of real is also associated with the idea of repetition since it is through this regularity that we appropriate the existence of things. In order to verify that something is real, we hope to be able to experience it again (Coyne, 2001). The body performs the movement, copying it through a possible representation which is, later, returned through a formula for automatic movement. Consciousness operates the synthesis of the countless relationships that are implicit in our body.

The real implies a presence and there are limits to what can be simulated in the computer. Using a specific set of algorithms and a computational system designed to deal with a type of spatial organisation (a grid of columns, for example) we may not be able to simulate another type of spatial representation (i.e., running in the mountains). It is considered that the number of points and corners in an object and their locations in space change according to how we choose to look at this object (Coyne, 2001: 75). For a normal person, playing implies the capacity to place oneself in an imaginary situation during a specific moment; it implies changing one's position. For a sick person this fictitious situation is not possible because this person converts it into something real. Our body is not in space and in time, but rather it inhabits space and time and motricity is the primary sphere that engenders the feeling of all the meanings in the realm of space represented (Merleau-Ponty, 1945: 157-66).

The phenomenological critique is based on the impossibility of expressing spatial experience through the mathematical description of its coordinates, since for phenomenology, the representation of the coordinates stems from the spatial experience. If we consider that the key to space resides in its mathematical description, then we can consider that virtual reality and cyberspace contain, reproduce and re-present it. Virtual reality and cyberspace do not challenge our concept of reality, but rather introduce new means and practices, disconnecting from older and more common practices and means. If, on the contrary, we believe that computers give us access to new subjective spatial experiences, then we should distinguish between space and place in a geographical sense. Space can be reduced and it can be described mathematically in drawings, plans and maps, whereas the place is qualified memory imbued with value (Coyne, 2001). Experience does not relate to an initiatory repetition, but rather to preparatory efforts in which habits and automatisms are acquired. Subjects who learn to play integrate the keyboard and the mouse to his corporeal space and the habit does not reside in thought or in the subjective body but rather in the body as a mediator of a world. During the repetition, there is an emotional appraisal caused by gestures of acclaim that highlight the expressive side of the game. The habit is nothing more than a fundamental means in which the

---

3 "Modulator neurons distribute neurotransmitters (such as dopamine, norepinephrine, serotonin and acetylcholine) over vast regions of the cerebral cortex and subcortical nuclei." (Damásio, 1994: 120).

Coyne says: "we cannot understand how organisms work simply by looking at chemistry. Laying out the DNA code of an organism will not itself tell us how the organism functions in its environment" (Coyne, 2001: 152). We do not access the design of things from geographical coordinates. From a phenomenology point-of-view information cannot dominate if we want to understand space from the concept of spatiality, because understanding begins with unreflected involvement. Understanding is praxis and that is the point that clearly distinguishes phenomenology from structuralist theories (Coyne, 2001: 152-54).

body allows itself to be penetrated by a new meaning. Our own body’s experience teaches us to root space in existence, and that the perception of space and the perception of things (spatiality) are not distinct acts (Merleau-Ponty, 1945).

The body functions as a system and in accordance with the theory of complexity and chaos, certain systems can reach a state where small changes in a given variable (a small part of the system) can produce extraordinary changes on the whole. Systems can be unpredictable, yet standardised. The only way to make predictions and plans on what may happen is by using a program that generates the event. On the one hand, the adaptive and gameplaying significant factors (Piaget) tell us that it is the repetition of the experience of the sensorial world that provides the basis for understanding. On the other hand, the repetitions that occur at the learning level cease when the stimulus involved is learned. This factor does not occur in the game. In the space of gameplay experience, repetitions continue due to the pleasure of excitement associated with the development of events on the board and normally do not disappear with habit. Brian Sutton-Smith says: “the game is not [only] repetitive, it is obsessive” (Sutton-Smith, 1997: 27). Repetition is everything and the space where it occurs provides a good test to examine the relationship between the computers and reality:

“The claims that computers are altering our conception of space and of reality, and even altering reality itself, are sustained by the prosaic proposition that computers, drawings, and models are representations, understood as correspondences between codes, words, or images, and some reality beyond. If computers allow us to model, mimic, and represent reality, then they indeed allow us to alter perceptual fields, challenge and distort reality, and create alternative realities. If the world is essentially a matter of patterns of chaos and order, then these patterns can be placed into vast interconnected computer systems to create an electronically reconstituted unity. So, rather than countering romanticism, empiricism provides the conditions for technoromantic narratives to promote the conditions the transcendent potential of computational space” (Coyne, 2001: 106).

Performing phrases and sequential actions cannot all be formatted by positivism, but rather appeal to the interpretation and the statements of creation and imagination. Positivism established the thought of many founders of artificial intelligence, cognitive sciences and the theory of systems. The Turing intelligence test, or the “game of imitation”, starts from the assumption that there is an empirical way of checking whether the machine is intelligent. The uncanny feeling is inherent to the concept of repetition and reminds us of our compulsion to repeat as children. What arouses so many suspicions in us in relation to the computer is precisely this automatic movement that forces us to repeat actions and makes us mechanical automatons.

6. UNCNANY VALLEY

The uncanny feeling, strengthened by repetition, is also accompanied, in experiences involving the emotional measurement of human beings in relation to robots, by a certain aversion to the total similarity of the latter with humans. These experiences are nicknamed the Uncanny Valley and were introduced by robotic scientist, Masahiro Mori. It seems that humans react well to dolls that are similar to them, but do not react well when the similarity is too close. The realism of the figurative representation is accentuated by a paradoxical relationship in digital culture. Since digital culture has the possibility to work without any reference to reality, contrary to cinema and photography, it is obsessed with reproduction of data from the physical world. For example, the analogue simulation where we situate motion capture (mocap) is of this nature and it attempts to capture the mathematical coordinates of the figure’s physical body in movement. We can include analogous simulation like flight simulators and game engines that replicate real world data.

In the case of generative processes or experience-based simulation, an attempt is made to capture the biological process inherent to the production of a certain effect, such as how a digital creature interacts with the environment in which it is inserted. Both these strategies are often adjusted and worked on simultaneously. “Avatars will become more realistic”, says Mark Stephen Meadows, “as noted, people instinctively want their avatars to become real. And the developers, designers, and builders of avatar systems are trying to render reality as fiction” (Meadows, 2008: 112). Soon we will see some experiments in real time measurement of movement and perception applied to digital “living” creatures. Movement evaluation, appearance and perceiving will maybe, in future time, explain why these anthropomorphic characters are so horrible when represented in a realistic manner. This is the target of some studies in the representation analysis area that focus on the conviction that avatars are today becoming much closer to humans.

The authors of this paper are currently working in a project called Infomedia, Information Acquisition in New Media at Movlab / Universidade Lusófona. This project deals with digital images and perception and the main focus of this research is to originate different behaviors and cognitive responses on the user’s side when dealing with fiction and micro narratives. Digital images captured from real human motion (mocap) are mixed with digital characters or avatars and tested by different players/users. A mixed animation is then created and can be tested to see how humans react to this recombining context. Content producers can generate, in this context, fully realistic images that defy human perception and totally blur the frontiers between the organic and the digital world. Such a process has consequences on the individuals, namely on the ways they perceive the symbolic value of such images and decode the messages they entail. Movlab project also tests the potential use of Augmented Reality (AR) for visualising human movement. The project consists on digital representation of
The intention is to capture the movements of an athlete set to begin a 400m race over real space using AR techniques. Thus, it records the movements of a professional athlete over motion capture, apply the movements to an avatar using 3D animation applications (3ds Max version 9), integrate the objects in real time (we used Virtuools Dev 3.0) and integrate the graphic processing to real video (ARToolKit).

The notion of realism resides in the game’s tactility and the player’s real bodily experience. This realism is not understood in the sense of the representation’s resemblance on the screen, but rather the technological capacity of the device to create real pleasures in the participant’s physical body (Lahti, 2003). Thus, the player surrenders to technology, the machine, which in exchange, frees the player’s body of the constraints of movement in real life. The body occupies another skin and it is aestheticised as a variety of itself, a toy with which we can play. Martti Lahti, citing Julian Stallabrass, states: “computer games force a mechanization of the body on their players in which their movements and the image of their alter-ego provide a physical and simulated image of the self under capital, subject fragmentation, reification and the play of allegory” (Lahti, 2003: 166-67). For Lahti, digital games seduce us to take pleasure in a sort of mechanisation process (Taylorisation) of the body which becomes a gratifying experience. The game requires a bodily discipline that is real, where the body adapts to the machine through the automatisms it imposes.

Acquiring the tactile experience inherent to the relationship with the interactive image is nothing more than accepting the interaction with the object. Acting changes the existing situation between the object and the ‘I’ although in this impulse there is no separation between the information’s theoretical result and the practical behaviour on which it is based. This aspect, contrary to what happens in the case of vision, shows well the difference between our feelings and the way this difference is reflected in our actions. The distinction between our hearing and our eyesight tells us that, while in the second there is a distance between perception of image (simultaneousness in the presentation of a variety, neutralization of the cause of the sense’s state and distance in the spatial and spiritual sense), in the first, “the duration of the sound we hear is equal to the duration of hearing”. Thus, in the case of our hearing: “the extension of the object and the extension of its perception coincide” (Jonas; 2004: 161). Likewise, touch, as well as hearing, implies the occurrence of successive perception, but like eyesight, it imposes a synthesis of data in the static presence of the object.

With touch, the subject and the object act on each other. In the case of eyesight, I see without having to do anything and without the object having to move for me to see it. In this context, although eyesight is the freest of all senses, because it imposes perceptive distance, it is also the least “realistic”. Jonas says: “touch is the feeling where the original encounter with reality as reality occurs. Touching brings with it the reality of the object within the sensorial experience, and this is a result of that which exceeds pure sensation, that is, the component of force present in its original composition. (...) Touch is the true proof of reality” (Jonas; 2004: 171). The experience of eyesight or optical perspective depends on locomotion, and self-movement is a principle of the organisation of senses, but also the means to synthesise all of them into a common objectivity.

Augmented Reality can help to generate emergent open narratives or narrations, where the player is not confronted with a closed plot, as in traditional narrative theory, with a beginning, middle and end structure, but instead engaged in an immersive environment which can contribute to the overall fiction. We assume that this mixed reality and the way the player travel through the interface using the Augmented Reality tool is a powerful way of creating stories and narratives. Jesper Jull points six different meanings for narrative: 1. as the presentation of a number of events, the original meaning of the word; storytelling; 2. as a fixed and predetermined sequence of events; 3. as a specific type of sequence of events; 4. as a specific type theme – humans or anthropomorphic entities; 5. any kind of setting or fictional world; 6. as the way we make sense of the world (Jull, 2005: 156-157). It can be very useful to let the player engage in emergent open narratives using Augmented Reality since it provides a full body participatory immersive experience: “emergent narratives are not pre-structured or pre-programmed, taking shape through the game play, yet they are not as unstructured, chaotic, and frustrating as life itself (Jull, 2005: 159).

7. CONCLUSION
We can conclude that realism in digital games mainly relates to the bodily experience inherent to repetitive action, and that image realism is a less important factor than realistic movement. The gaming device forces the player’s body to acquire automatisms, and the fictional experience on the board or magical space, which is the game, is essentially an incorporated experience. The design of human-computer interface should incorporate open fictions and narratives in order to let the player build is own meaning and bodily incorporated experiences. Design platforms can stimulate collaborative networks where players enact as actors in a digital drama.

8. ACKNOWLEDGMENTS
Our thanks to ACM SIGCHI for allowing us to modify templates they had developed. Article drafted within the scope of the PTDC/CCI/74114/2006 research project (INFOMEDIA – Information Acquisition in New Media) financed by the Science and Technology Foundation.

9. REFERENCES


